Исследование электромагнитного поля в регулярном волноводе, заполненным однородным веществом, сводится к исследованию двух независимых краевых задач для уравнения Гельмгольца. В случае волновода, заполненного неоднородным веществом, между модами этих двух задач возникает связь, которую в численных экспериментах не всегда удаётся учесть в полной мере. В настоящей статье показано, как переписать уравнения Гельмгольцав векторной форме, чтобы выразить эту связь явно.В работе рассматривается цилиндрический волновод с идеально проводящими стенками,заполнение которого может менять в поперечном сечении произвольным образом. В основе нашего подхода лежит двумерный аналог теоремы, известной в теории упругих тел как декомпозиция Гельмгольца. На её основании будут введены четыре потенциала вместо двух,обычно используемых в теории полых волноводов. Доказано, что любое решение уравнений Максвелла в волноводе, удовлетворяющее краевым условиям идеальной проводимости на стенках волновода, можно представить при помощи этих потенциалов. Система уравнений Максвелла записана относительно этих потенциалов, и показано, что эта система переходит в пару несвязанных уравнений Гельмгольца в случае полого волновода.