Материалов:
1 081 645

Репозиториев:
30

Авторов:
761 409

A note on the properties of associated Boolean functions of quadratic APN functions

Дата публикации: 2020

Дата публикации в реестре: 2020-03-14T00:29:08Z

Аннотация:

Let F be a quadratic APN function in n variables. The associated Boolean function yf in 2n variables (yF(a, b) = 1 if a = 0 and equation F(x) + F(x + a) = b has solutions) has the form yF(a, b) = Ф,р(a) • b + ^F(a) +1 for appropriate functions Ф,р : Fn Fn and ^f : Fn F2. We summarize the known results and prove new ones regarding properties of Ф,р and ^F. For instance, we prove that degree of Ф,р is either n or less or equal to n - 2. Based on computation experiments, we formulate a conjecture that degree of any component function of Ф,р is n — 2. We show that this conjecture is based on two other conjectures of independent interest.

Ключевые слова:
APN-функции, булевы функции

Тип: статьи в журналах

Источник: Прикладная дискретная математика. 2020. № 47. С. 16-21


Связанные документы (рекомендация CORE)