Рассматривается нелокальная краевая задача для уравнения в частных производных третьего порядка с самосопряженным положительно определенным оператором A в гильбертовом пространстве H. Приводится устойчивая трехшаговая разностная схема для приближенного решения задачи. Для этой разностной схемы доказывается основная теорема об устойчивости. В качестве приложений, для трех нелокальных краевых задач для уравнений в частных производных третьего порядка получены оценки устойчивости приближенных решений, полученных при помощи разностных схем.
Тип: Article
Права: open access
Источник: Современная математика. Фундаментальные направления